
Chapter 8 Entropy For a Control Mass 
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8.1. The Inequality of Clausius 

Reversible heat engine cycle 
for demonstration of the 
inequality of Clausius. 

Clasius inequality 

Consider first a reversible (Carnot) heat engine cycle 
operating between reservoirs at temperatures TH and TL 

The cyclic integral of the heat transfer is greater 

than zero 

Since TH and TL are constant, from the definition of 
the absolute temperature scale and from the fact this 
is a reversible cycle 

If     δQ, the cyclic integral of δQ, approaches zero (by making 
TH approach TL) and the cycle remains reversible, the cyclic 
integral of δQ/T remains zero. Thus, we conclude that for all 
reversible heat engine cycles 

and 
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Consider an irreversible cyclic heat engine operating between the same TH and TL 

Since QH − QL = W 

and therefore 

Consequently, for the irreversible cyclic engine, 

Suppose that we cause the engine to become more and more irreversible but 
keep QH, TH, and TL fixed. The cyclic integral of δQ then approaches zero, 
and that for δQ/T becomes a progressively larger negative value 

Thus, we conclude that for all 
irreversible heat engine cycles 
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Reversible refrigeration 
cycle for demonstration 
of the inequality of Clausius. 

To complete the demonstration 
of the inequality of Clausius, we 
must perform similar analyses 
for both reversible and 
irreversible refrigeration cycles 

For the reversible 
refrigeration cycle 

As the cyclic integral of 
δQ approaches zero 
reversibly (TH approaches 
TL), the cyclic integral of 
δQ/T remains at zero. 

For the irreversible 
Refrigerator cycle 

Thus, for all irreversible 
refrigeration cycles, 

Thus, for all cycles we can write 

Thus, for all reversible 
refrigeration cycles, 
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Suppose that someone reports that the 
pressure and quality at various points in the 
cycle are as given in Figure. Does this cycle 
satisfy the inequality of Clausius? 

Heat is transferred in two places, the boiler and the condenser. Therefore, Heat is 
transferred in two places, the boiler and the condenser. Therefore, 
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8.2. Entropy – A Property of a System 

The second law of thermodynamics leads to a property of a system that we call entropy. 

Let a system (control mass) undergo a reversible 
process from state 1 to state 2 along a pathA, and 
let the cycle be completed along pathB, which is 
also reversible. 

a reversible process from state 1 to state 2 along a pathA 

a reversible process from state 1 to state 2 along a pathC 

Subtracting the second equation from the first 

Since        δQ/T is the same for all reversible paths between states 1 and 2, we conclude 
that this quantity is independent of the path and is a function of the end states only; 
it is therefore a property. This property is called entropy and is designated S. 
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Entropy may be defined as a property of a 
substance in accordance with the relation 

Entropy is an extensive property, and the entropy per unit mass is designated 
s. It is important to note that entropy is defined here in terms of a reversible 
process. 

The change in the entropy of a system as it 
undergoes a change of state may be found by 
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8.3. The Entropy of a Pure Substance   

Values of specific entropy (entropy per unit mass) are given in tables of 
thermodynamic properties in the same manner as specific volume and 
specific enthalpy. 

Above the line, the 
properties  are given for 
the compressed liquid or 
subcooled region 

Below the line, the 
properties  are given for 
the superheated region A partial listing of Table 2.5.3. 

The units of specific entropy in the steam tables, refrigerant tables, and 
ammonia tables are kJ/kg.K, and the values are given relative to an 
arbitrary reference state. 
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In general, we use the term entropy to refer to both total entropy and entropy 
per unit mass, since the context or appropriate symbol will clearly indicate 
the precise meaning of the term. 

In the saturation region the entropy may 
be calculated using the quality. The 
relations are similar to those for specific 
volume, internal energy and enthalpy. 

( )f fg f g fs s x s s x s s    

The entropy of a pure substance is determined 
from the tables (like other properties). 

The entropy of a compressed liquid is 
tabulated in the same manner as the 
other properties. These properties are 
primarily a function of the temperature 
and are not greatly different from those 
for saturated liquid at the same 
temperature.  

Table 2.5.3 of the steam tables give the 
entropy of compressed liquid water in 
the same manner as for other properties. 
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The thermodynamic properties of a substance are often shown on a temperature 
entropy diagram and on an enthalpy entropy diagram, which is also called a 
Mollier diagram,  

Temperature–Entropy diagram for steam Enthalpy–Entropy diagram for steam 

These diagrams are valuable both because they present thermodynamic 
data and because they enable us to visualize the changes of state that 
occur in various processes.  

U N I V E R S I T Y  O F  G A Z I A N T E P                    M E  2 0 4 :  T H E R M O D Y N A M I C S  I   

M E C H A N I C A L  E N G I N E E R I N G  D E P A R T M E N T               A S S I S T .  P R O F .  D R .  F U A T  Y I L M A Z  



8.4 Entropy Change in Reversible Processes 

In this section we will limit ourselves to systems that undergo reversible processes 

and consider the Carnot cycle, reversible heat–transfer processes, and reversible 
adiabatic processes. 

The first process (1-2) is the isothermal transfer of heat to the 
working fluid from the high–temperature reservoir. 

2

2 1

1 rev

Q
S S

T

 
   

 


Since this is a reversible process in which the temperature 
of the working fluid remains constant, the equation can be 
integrated to give 

2

12
2 1

1

1

H H

Q
S S Q

T T
  

Carnot cycle 

This process is shown in Figure, and 

the area under line 1–2, area 1–2–

b–a–1, represents the heat 

transferred to the working fluid 

during the process (QH). 

The Carnot cycle on the temperature–entropy diagram 
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The second process (2-3) of a Carnot cycle is a reversible 
adiabatic one. From the definition of entropy, 

rev

Q
dS

T

 
  
 

the entropy remains constant in a reversible adiabatic process. A constant entropy 
process is called an isentropic process. Line 2–3 represents this process, and this 
process is concluded at state 3 when the temperature of the working fluid reaches TL. 

The third process (3-4) is the reversible isothermal 
process in which heat is transferred from the working 
fluid to the low temperature reservoir 

4
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3 rev L

QQ
S S

T T

 
   

 


During this process the heat transfer is negative, So the entropy of the working 
fluid decreases. 

The final process (4–1), which completes 
the cycle, is a reversible adiabatic process 
(and therefore isentropic) 

Entropy decrease in process 3–4 must 
exactly equal the entropy increase in 
process 1–2 

U N I V E R S I T Y  O F  G A Z I A N T E P                    M E  2 0 4 :  T H E R M O D Y N A M I C S  I   

M E C H A N I C A L  E N G I N E E R I N G  D E P A R T M E N T               A S S I S T .  P R O F .  D R .  F U A T  Y I L M A Z  



The area under line 3–4, area 3–A–a–b–3, represents the heat transferred from the 
working fluid to the low–temperature reservoir. 

Since the net work of the cycle is equal to the net heat transfer, then area 1–2–3–
4–1 must represent the net work of the cycle. The efficiency of the cycle may also 
be expressed in terms of areas 

1 2 3 4 1

1 2 1

net
th

H

W area

Q area b a


   
 

   

If the cycle is reversed, we 

have a refrigerator or heat 

pump. The Carnot cycle for 

a refrigerator is shown in 

Figure (b).  
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A temperature–entropy 
diagram to show areas that 
represent heat transfer for an 
internally reversible process 

The heat transfer to or from a system can be shown 
as an area on a temperature–entropy diagram 

Consider the change of state from saturated 
liquid to saturated vapor at constant pressure 
The process 1–2 on the T–s diagram of Figure  

The area 1–2–b–a–1 represents the heat 
transfer. Since this is a constant–pressure 
process, the heat transfer per unit mass is 
equal to hfg. Thus,  

2 2
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1 1
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fg

rev

hQ q
s s s Q

m T mT T T



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 
 

If heat is transferred to the saturated vapor at constant 
pressure, the steam is superheated along line 2–3 

3 3

23

2 2

1
q Q T ds

m
  

Since T is not constant, this equation cannot be integrated unless we know a 
relation between temperature and entropy.  

3

2

T dsHowever, we do realize that the area under line 2–3, area 2–3–c–b–2, represents  

and therefore represents the heat transferred during this reversible process.  
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The important conclusion to draw here is that for processes that are internally 
reversible, the area underneath the process line on a temperature–entropy diagram 
represents the quantity of heat transferred. This is not true for irreversible processes 

On a T-S diagram, the area under the process curve represents the 
heat transfer for internally reversible processes. 
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8.5 The Thermodynamic Property Relation 

Two important thermodynamic relations for a simple compressible substance 

T dS dU PdV 

T dS dH V dP 

the first T ds, or Gibbs equation 

the second T ds equation 
Two forms of the 
thermodynamic property 
relation and are frequently 
called Gibbs equations 

surface effects, 
magnetic effects, and 
electrical effects are 
insignificant when 
dealing with the 
substances 

W pdV dL dA dZ    

T dS dU PdV dL dA dZ    

substances of fixed 
composition other 
than a simple 
compressible 
substance 

U N I V E R S I T Y  O F  G A Z I A N T E P                    M E  2 0 4 :  T H E R M O D Y N A M I C S  I   

M E C H A N I C A L  E N G I N E E R I N G  D E P A R T M E N T               A S S I S T .  P R O F .  D R .  F U A T  Y I L M A Z  



8.6 Entropy Change of a Solid or Liquid 

Since                    for liquids and solids 

Liquids and solids can be 
approximated as 
incompressible substances 
since their specific volumes 
remain nearly constant 
during a process. 

For and isentropic process  (a reversible + adiabatic (dq = 0))  of an incompressible 
substance 
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8.7 Entropy Change of an Ideal Gas 

From the first T ds relation From the second T ds relation 
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We choose absolute zero as the reference 
temperature To and define a function s° as 

The entropy of an ideal gas 
depends on both T and P. 
The function s° represents 
only the temperature-
dependent part of entropy. 

On a unit–mole basis 

On a unit–mass basis 

The second possibility for the specific heat is to use an analytical equation for Cpo 
in the below equation as a function of temperature 

2

1

poo

T

C
s dT

T
  standard entropy 

For air in Table 2.4.3 or  
For other gases in Table 2.12.21 

Tables 2.4.3 and 2.12.2, would give the most accurate 
results, and the equations listed in Table 2.4.1 
would give a close empirical approximation. 
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Let us now consider the case of an ideal gas undergoing an isentropic process 

During an internally 
reversible, adiabatic 
(isentropic) process, the 
entropy remains constant. 

A process during which the entropy remains constant is called 
an isentropic process. 

The isentropic process appears as a vertical 
line segment on a T-s diagram. 
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2 2
2 1

1 1

0 ln lnpo

T P
s s C R

T P
    left side equal to zero for isentropic process 

2 2

1 1

ln ln
po

T R P

T C P


/
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 
  
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or 
1po vo

po po

C CR k

C C k

 
 However 

where k, the ratio of the specific heats 
po

vo

C
k

C


( 1) /

2 2

1 1

k k

T P

T P



 
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 

Setting this equation equal to zero, we get 

and thus 

From this expression and the ideal gas equation of state 

( 1)

2 1

1 2

k

T v

T v



 
  
 

2 1

1 2

k

P v

P v

 
  
 

kPv constant

The isentropic relations of ideal gases are valid for 
the isentropic processes of ideal gases only. 

U N I V E R S I T Y  O F  G A Z I A N T E P                    M E  2 0 4 :  T H E R M O D Y N A M I C S  I   

M E C H A N I C A L  E N G I N E E R I N G  D E P A R T M E N T               A S S I S T .  P R O F .  D R .  F U A T  Y I L M A Z  



8.8 The Reversible Polytropic Process for an Ideal Gas 

When a gas undergoes a reversible process in which there is heat transfer, 

the process frequently takes place in such a manner that a plot of log P 

versus log V is a straight line, as shown in Figure. For such a process PVn 

is a constant.  

A process having this relation between pressure and volume is called a 
polytropic process. An example is the expansion of the combustion gases 
in the cylinder of a water-cooled reciprocating engine. 
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From this figure it follows that 

ln

ln

d P
n

d V
  ln ln 0d P nd V 

If n is a constant, this equation can be integrated to 
give the following relation 

1 1 2 2

n n nPv constant Pv Pv  

From this equation the following relations can be written for a polytropic process 
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P V
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 

   
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For a control mass consisting of an ideal gas, the work done at the moving boundary 
during a reversible polytropic process can be derived, 

2

1 2
1

nW PdV and PV cons 
2

2 2 1 1 2 1
1 2

1
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1 1

n PV PV mR T T
W cons V dV

n n

  
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for any value of n except n = 1 
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The polytropic processes for various values of n are shown in Figure on P-v 

and T-s diagrams. The values of n for some familiar processes are  

Isobaric process: n = 0, P= constant 
Isothermal process: n = 1, T= constant 
Isentropic process: n = k, s = constant 
Isochoric process: n = , v = constant 
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The reversible isothermal process for an ideal gas is of particular interest. 
In this process 

1 1 2 2Pv constant Pv Pv  

The work done  
2

1 2
1

W PdV 
2

2 1
1 2 1 1 1 1

1
1 2

ln ln
dV V P

W cons PV PV
V V P
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2 1

1 2

1 2

ln ln
V P

W m RT m RT
V P

 or 

Because there is no change in internal energy or enthalpy in an isothermal 
process, the heat transfer is equal to the work  

2 2 2

12
1 1 1

T ds q du Pdv    

But du = 0 and P v = constant = P1 v1 = P2 v2, such that 

2
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1 2 1 1
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q Pdv P v
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8.9 Entropy Change of a Control Mass During an Irreversible Process 

Consider a control mass that undergoes the cycles shown in Figure.  

The cycle made up of the reversible processes and 

B is a reversible cycle. Therefore, we can write 

The cycle made of the irreversible process C and the 

reversible process B is an irreversible cycle. Therefore, 

for this cycle the inequality of Clausius may be applied 

Subtracting the second equation from the first and rearranging 
2 2

1 1A C

Q Q

T T

    
   

   
 
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Since path A is reversible, and since 
entropy is a property 

2 2 2

1 1 1

A C

A

Q
dS dS

T

 
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 
  

Therefore, 
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Q
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As path C was arbitrary, the general result is 
Q

dS
T




2

2 1
1

Q
S S

T


  

In these equations the equality holds for a reversible process and the inequality for an 
irreversible process. 

or 

If an amount of heat Q is transferred to a control mass at temperature 
T in a reversible process, the change of entropy is given by the relation 

rev

Q
dS

T

 
  
 

If any irreversible effects occur while the amount of heat Q is 
transferred to the control mass at temperature T, however, the 
change of entropy will be greater than for the reversible process. irrev

Q
dS

T

 
  
 

The entropy will tend to decrease as a result of the heat transfer. However, 
the influence of irreversibilities is still to increase the entropy of the mass, 
and from the absolute numerical perspective we can still write for Q: 

Q
dS

T



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8.10 Entropy Generation 

The entropy change for an irreversible process is larger than the change in a reversible 
process for the same Q and T. 

gen

Q
dS S

T


 

provided the last term is positive, 

0genS 

  

The amount of entropy, Sgen is the entropy generation in the process due to 
irreversibilities occurring inside the system such as friction, unrestrained expansions, 
and the internal transfer of energy (redistribution) over a finite temperature difference. 
In addition to this internal entropy generation, external irreversibilities are possible by 
heat transfer over finite temperature differences as the Q is transferred from a 
reservoir or by the mechanical transfer of work.  A control mass for now but later 
extended to the more general control volume. 
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Consider a reversible process, for which the entropy generation is zero, and the heat 
transfer and work terms therefore 

Q T dS and W PdV  

For an irreversible process with a nonzero entropy generation 

irr genQ T dS T S  

T dS dU PdV 

irr genW PdV T dS  

irr irrQ dU W  

The work is reduced by an amount proportional to the entropy generation. For this 
reason the term T Sgen is often called "lost work,"  
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2

2 1 12
1

gen

Q
S S S

T


  gen

Q
dS S

T


 

Integration of left side equation 
between initial and final states 

the entropy balance 
equation for a 
control mass  

Entropy in out gen    The equation can also be written in the general form 

stating that we can generate but not destroy entropy. This is in contrast to energy, 
which we can neither generate nor destroy. 
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First, there are two ways in which the entropy of a system can be 
increased – by transferring heat to it and by having an irreversible 
process. Since the entropy generation cannot be less than zero, 
there is only one way in which the entropy of a system can be 
decreased, and that is to transfer heat from the system. These 
changes are illustrated in a T-s diagram in Figure. 

Some important conclusions can be drawn 

Second, as we have already noted for an adiabatic process, Q = 0, and therefore the 
increase in entropy is always associated with the irreversibilities. 
 
Third, the presence of irreversibilities will cause the work to be smaller than the reversible 
work. This means less work out in an expansion process and more work into the control 
mass (W< 0) in a compression process. 

Finally, it should be emphasized that the change in s associated with the heat transfer is a 
transfer across the control surface, so a gain for the control volume is accompanied by a 
loss of the same magnitude outside the control volume. This is in contrast to the 
generation term that expresses all the entropy generated inside the control volume due to 
any irreversible process. 
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The work for an irreversible process is not equal to P dV, and the heat transfer is not 
equal to T dS. Therefore, the area underneath the path does not represent work and 
heat on the P-V and T-S diagrams in Figure a.  
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8.11 Principle of the Increase of Entropy 

The entropy change of a control mass could be either positive or negative, since entropy 
can be increased by internal entropy generation and either increased or decreased by heat 
transfer, depending on the direction of that transfer. Now we would like to emphasize the 
difference between the energy and entropy equations and point out that energy is 
conserved but entropy is not. 

2 1( )A a a b bE E Q W Q W    

2 1( )B b b c cE E Q W Q W    

2 1( )C c c a aE E Q W Q W    

2 1( ) a b
A gen A

a b

Q Q
S S S

T T

 
    

2 1( ) b c
B gen B

b c

Q Q
S S S

T T

 
    

2 1( ) c a
C genC

c a

Q Q
S S S

T T

 
    

Energy  

Entropy:  
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Now we add all the energy equations to get the energy change 

2 1 2 1 2 1 2 1( ) ( ) ( ) ( )total A B CE E E E E E E E      

a a b b b b c c c c a aQ W Q W Q W Q W Q W Q W            0

  
  

For entropy  
2 1 2 1 2 1 2 1( ) ( ) ( ) ( )total A B CS S S S S S S S      

a b b c
gen A gen B

a b b c

c a
genC

c a

Q Q Q Q
S S

T T T T

Q Q
S

T T

   

 

     

  

   

  0gen A gen B genCS S S   

leaving only the positive entropy generation terms 

The total entropy increases and is then not conserved. Only if we have reversible 
processes in all parts of the world will the right-hand side term becomes zero. This 
concept is referred to as principle of the increase of entropy. 
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8.12 Entropy as a Rate Equation 

The rate form is also the basis for the development of the entropy balance equation 
in the general control volume analysis for an unsteady situation. 
 
Take the incremental change in S from  

gen

Q
dS S

T


  and divide by t. We get 

1 genSdS Q

t T t t



 
  or 

1cm
gen

dS
Q S

dt T
 

expressing the rate of entropy change as due to the flux of entropy into the control 
mass from heat transfer and an increase due to irreversible processes inside the 
control mass. 
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